
LightJason: A BDI Framework Inspired
by Jason
Malte Aschermann, Philipp Kraus, Jörg P. Müller

IfI Technical Report Series IfI-16-04

Impressum

Publisher: Institut für Informatik, Technische Universität Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany

Editor of the series: Jürgen Dix
Technical editor: Tobias Ahlbrecht
Contact: tobias.ahlbrecht@tu-clausthal.de

URL: http://www.in.tu-clausthal.de/forschung/technical-reports/

ISSN: 1860-8477

The IfI Review Board

PD. Dr. habil. Nils Bulling (Theoretical Computer Science)
Prof. Dr. Jürgen Dix (Theoretical Computer Science/Computational Intelligence)
Prof. i.R. Dr. Klaus Ecker (Applied Computer Science)
Prof. Dr. Thorsten Grosch (Graphical Data Processing and Multimedia)
Prof. Dr. Sven Hartmann (Databases and Information Systems)
PD. Dr. habil. Wojciech Jamroga (Theoretical Computer Science)
Prof. i.R. Dr. Gerhard R. Joubert (Practical Computer Science)
apl. Prof. Dr. Günter Kemnitz (Hardware and Robotics)
Prof. i.R. Dr. Ingbert Kupka (Theoretical Computer Science)
Prof. i.R. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jörg Müller (Business Information Technology)
Prof. Dr.-Ing. Michael Prilla (Human-Centered Information Systems)
Prof. Dr. Andreas Rausch (Software Systems Engineering)
Dr. Andreas Reinhardt (Embedded Systems)
apl. Prof. Dr. Matthias Reuter (Modeling and Simulation)
Prof. Dr. Harald Richter (Technical Informatics and Computer Systems)
Prof. Dr. Christian Siemers (Embedded Systems)

LightJason: A BDI Framework Inspired by Jason

Malte Aschermann, Philipp Kraus, Jörg P. Müller

Department of Informatics, Clausthal University of Technology, Julius-Albert-Str. 4
D-38678 Clausthal-Zellerfeld, Germany

{malte,philipp}@lightjason.org,joerg.mueller@tu-clausthal.de

http://lightjason.org

Abstract

Current BDI agent frameworks often lack necessary modularity, scalability and are
hard to integrate with non-agent applications. This paper reports ongoing research
on LightJason , a multi-agent BDI framework based on AgentSpeak(L) , fine-tuned
to concurrent plan execution in a distributed framework; LightJason aims at effi-
cient and scalable integration with existing platforms. We state requirements for
BDI agent languages and corresponding runtime systems, and present the key con-
cepts and initial implementation of LightJason in the light of these requirements.
Based on a set of requirements derived for scalable, modular BDI frameworks,
the core contribution of this paper is the definition of a formal modular grammar
for AgentSpeak(L++) , a modular extension of AgentSpeak(L) , and its underlying
scalable runtime system. A preliminary validation of LightJason is given by means
of an example evacuation scenario, an experimental analysis of the runtime perfor-
mance, and a qualitative comparison with the Jason platform.

1 Introduction

Agent-oriented programming (AgOP) [1] is about building systems consisting of soft-
ware agents maintaining mental states, based on declarative logical languages. The
Belief-Desire-Intention (BDI) paradigm [2] has become the prevalent approach to AgOP
and multi-agent systems (MAS). Such agent programs consist of statements in first-
order logic, allowing agents to deduce new facts, commit to plans and eventually exe-
cute actions. A very popular language for programming BDI agents is AgentSpeak(L) [3].
Jason [4] has been instrumental to the popularity of AgentSpeak(L) by providing a BDI
agent framework that combines an extension of AgentSpeak(L) with an interpreter and
provides integrated development environment (IDE) plugins for JEdit and Eclipse.
However, analysing the level of usage of BDI agent frameworks in software engineering
practice reveals a sobering picture. A look at the major programming indices Tiobe
[5], Redmonk [6] and PopularitY [7], which measure the popularity of programming
languages, shows that the world of practice is still dominated by imperative and object-

1

http://lightjason.org

Requirements and State of the Art

Table 1: The ten most commonly used programming languages in 2016. C, C++, C#,
Java, Python, Ruby represent the mainly used functional and object-oriented languages
in world-wide projects (percentage shows the spread within projects).
Rank Tiobe PopularitY RedMonk

1 Java (20.794%) Java (22.4%) JavaScript
2 C (12.376%) Python (14.9%) Java
3 C++ (6.199%) C# (10.7%) PHP
4 Python (3.900%) C++ (10.2%) Python
5 C# (3.786%) PHP (9.4%) C#
6 PHP (3.227%) Javascript (7.1%) C++
7 JavaScript (2.583%) C (5.9%) Ruby
8 Perl (2.395%) Objective-C (3.8%) CSS
9 Visual Basic .NET (2.353%) Matlab (3.1%) C

10 Ruby (2.336%) R (2.5%) Objective-C
.
33 Prolog (0.471%) — —

oriented languages (see Table 1). Only Tiobe lists any logic-based languages: The
major proponent Prolog is ranked 33rd. AgOP languages are not represented at all.

Furthermore, in their study of MAS application impact, [8] show that among the
agent languages, the only ‘true’ BDI language with some application impact is Jack, a
proprietary language, while the use of languages like Jason or GOAL is restricted to
academic prototypes.

The hypothesis underlying our research is that part of the reasons1 for this dire state
are elementary shortcomings of AgOP languages regarding modularity, maintainability,
software architecture interoperability, performance, and scalability.

This paper reports ongoing research on a multi-agent framework based on Agent-
Speak(L) which aims at an efficient and scalable integration into existing platforms,
enabling non-agent-aware systems to incorporate agent-based optimisation techniques
to solve distributed problems. We present the initial version of LightJason , a BDI
agent framework fine-tuned to concurrent plan execution in a distributed environment.
LightJason provides a runtime system for AgentSpeak(L++) , an extension of Agent-
Speak(L) . The runtime system is a Java-based instantiation of the Multi-Agent Scalable
Runtime platform for Simulation (MASeRaTi) architecture presented in [9].

In Section 2, we state requirements for an AgOP framework and provide a brief anal-
ysis of related work. Section 3 sketches the overall design approach and architecture
of LightJason . Section 4 is the core of this paper. It describes the modular design
and grammar of the AgentSpeak(L++) language, including the built-in action concept.
Section 5 presents a preliminar validation based on an example application and a per-
formance validation. The paper ends with a conclusion and outlook in Section 6.

1We acknowledge that there are various other reasons including the difficulty of maintaining long-lived
software projects in an academic context.

DEPARTMENT OF INFORMATICS 2

LIGHTJASON

2 Requirements and State of the Art

2.1 Requirements
Over the past years, we have gained experience in modelling and engineering multi-
agent applications based on the BDI paradigm (most notably in domains of traffic and
industrial business processes), but also with developing agent programming languages
and runtime platforms. While we consider the BDI abstraction appealing and intuitive
for modelling sociotechnical systems, we were often confronted with the limitations of
today’s agent platforms. From these limitations, we derived a number of requirements
for BDI agent platforms, which extend the list of general requirements from [4, p. 7]):

1. Integration in existing software architectures: E.g., for agent-based traffic simula-
tion, MAS framework need to scale up for thousands of agents, while connecting
to an existing runtime system (e.g., a SUMO traffic simulator). Thus, agent be-
haviour needs to be attached on top of an existing object-oriented structure. One
desirable (clean and efficient) way of doing this is by subclassing a generic agent
class to implement domain-specific functions.

2. Modularisation of agents and underlying data structure: There is a lack of mod-
ular logic languages which are suitable for extending existing software frame-
works. Modularity is a key requirement also to enable scalable integration with
legacy systems. It is also key for maintainability of software.

3. Agent scripting language with strict language syntax: This will allow us to pro-
vide tools helping the developer to check agent program syntax at parse-time,
i.e., before the agent is executed. Also, the language should reflect modularisa-
tion (see above).

4. Action checking during parsing time, not during run time: Methods of an agent-
object should create actions automatically and availability of actions in the Envi-
ronment should be checked on parsing time. The absence of such a mechanism
in Jason is a source of errors and tedious debugging.

5. Full execution control of the reasoning cycle: The fixed BDI agent reasoning cy-
cle as e.g., implemented in Jason leads to problems in conjunction with application-
level processes that require synchronisation among agents. An example reported
in [9] is the Nagel-Schreckenberg car following model. Thus, it is desirable to
generalise the action-centric reasoning cycle in Jason to a plan-centric model,
that (1) allows the agent class designer to modify the agent cycle for application-
specific agent implementations, and (2) provides ways for scenario-specific mod-
ifications of the implementation of the execution mechanism (thread pool).

6. Parallel execution of plans in separated execution tasks: Related to the previous
requirement, a AgOP framework should enable concurrent execution of agents
(and thus plans), so that in principle, on every cycle the plans for all possible

3 Technical Report IfI-16-04

Requirements and State of the Art

goals that can be instantiated will be executed; hence, when the cycle ends, all
plans are finished.

7. Agent generation mechanism to allow easy creation of large numbers of agent
instances: For generating new agents, a Factory pattern should be provided, with
only a single parsing process for better modularisation.

8. Hierarchically structured belief bases and actions in semantic groups: Hierar-
chical naming schemes are useful for modularity and efficient organisation of
different knowledge categories.

2.2 Discussion of state of the art
The main concepts of BDI frameworks are mostly based on the Procedural Reasoning
System (PRS) [10, 11] and the first robust implementations such as dMARS [12]. As
[13] and subsequent surveys point out, virtually all existing multi-agent frameworks
are not designed for productive use (performance, scalability) and easy integration with
specific domains. The design of agent-based scripting languages leads to challenges in
maintainability; e.g. Bordini et al. [14, p. 1300] state that: “[T]he AgentSpeak(L) code
is not elegant at all. The resulting code is extremely clumsy because of the use of many
belief addition, deletion, and checking (for controlling intention selection) [. . .] [and]
thus a type of code that is very difficult to implement and maintain.” Though this is a
paper from 2002, the situation has not changed much.

MAS platforms like Jason provide a separate runtime system, these approaches raise
issues regarding scalability and consistency, especially when combining existing sys-
tems with MAS. In the case of Jason , this also can lead to ill-defined execution be-
haviour of agents, especially regarding clarity when an iteration of the agent control
cycle has ended (see Item 5 above).

In this paper, we focus on the comparison with AgentSpeak(L) /Jason as the most
prominent (open-source) representative of BDI languages / platform. We compared
the legacy Jason 1.4 branch, which is still in use in our research group for small-scale
agent-based traffic simulation (e.g. [15]), and the quite recently published Jason 2.0
branch with our requirements. Jason 1.4 lacks support for all the above-mentioned re-
quirements except a partially support for modular agents (requirement 2), due to its
include functionality. Jason 2.0 additionally supports a hierarchical structuring of
agents (requirement 8), but this feature is limited to beliefs and plans2. Also, one new
feature of Jason 2.0 is parallel execution of plans [16], which addresses requirement
6. However, like Jason 1.4, Jason 2.0 still heavily relies on synchronised data struc-
tures in their architecture design, implying slow-downs due to locking and CPU context
switches during each agent cycle. In their approach adding concurrency to the reason-
ing cycles in Jason , [16] provided benchmark results regarding scalability; their test
setup with only two CPU cores and synthetic benchmarks (e.g. nested for-loops and

2https://github.com/jason-lang/jason/blob/master/doc/tech/
modules-namespaces.pdf

DEPARTMENT OF INFORMATICS 4

https://github.com/jason-lang/jason/blob/master/doc/tech/modules-namespaces.pdf
https://github.com/jason-lang/jason/blob/master/doc/tech/modules-namespaces.pdf

LIGHTJASON

Fibonacci sequence) resulted in a linear increase in execution time for up to 500 agents,
which would also be expected for single-thread applications.

In order to tackle the above requirements, we start from the architecture design of
MASeRaTi [9], as an attempt to tackle the scalability issues in modern MAS. In the
next sections, we describe how we take this approach forward. We create a modified,
light version of AgentSpeak(L) (named AgentSpeak(L++)) and build a Java-based im-
plementation of the MASeRaTi architecture.

3 LightJason Architecture and Data Model

In this section we describe the methodology underlying the design and the implemen-
tation of LightJason , aiming at scalability, concurrent execution, and modularity.

There is broad agreement in the AgOP literature that “[a] multi-agent system is
inherently multithreaded, in that each agent is assumed to have at least one thread
of control [17, p. 30]” meaning that agents should be able to pursue more than one
objective at the same time. To implement this conceptual notion of concurrency at the
technical level, we refer to the basic notion of a thread [18] as a “lightweight process”,
and that all threads are running within the same process. Thus, in LightJason , an agent
is be controlled by a thread during the reasoning process and stores all data for the
reasoning internally, by following the thread-local-storage model. A multi-agent system
runs on a thread-pool in which agents are running in an asynchronously and continuous
manner. For each agent, actions will be executed independently and immediately within
the environment.

Our general approach in LightJason is to conceive AgOP as a combination of Imper-
ative, Object-Oriented and Logic Programming, see Figure 1.

We see AgOP as a paradigm which extends the Object-Oriented Programming (OOP)
paradigm (see Figure 1), but in our view this extension is more than just adding new
syntax features to the language.

Assembler / Machine Code

Functional

Object Oriented

Agent Oriented

Ag
en

t V
ie

w

Ar
ch

ite
ct

ur
e

Vi
ew Logical Mind

Body

Execution

Programming

Programming

Facts,
Plans

Actions,
Objects

Programming

Figure 1: Agent Views at Design and Implementation Time

5 Technical Report IfI-16-04

LightJason Architecture and Data Model

Using declarative Logic Programming models, we define flexible agent behaviour.
Mostly, an agent should cooperate with other agents in a decentralised way with local
views to the problem. These components are described within the BDI architecture
(belief, desires and intentions). To get into a more detailed view, an agent is not one
single software component but it is split up into two different elements, i.e. agent-
mind and agent-body. This approach is a reverence to the Mind-Head-Body model
proposed by Steiner et al. in the Multi-agent Environment for Constructing Cooperative
Applications (MECCA) architecture [19].

Considering the semantic and syntactic view on MECCA we generalised its archi-
tecture and reduced the authors’ concepts of cooperation in order to achieve similar
complexity by using current technologies and modelling concepts. From the semantic
point of view MECCA’s definitions and algorithms are mapped to (logical) algorithms
or complex components and from the syntactic point of view MECCA’s elements are
mapped or generalised to logical elements of LightJason . MECCA uses cooperative
primitives, which can be plans, goals or tasks ([19, Chapter 3]). As such primitives are
a central part of the agent-mind, we adopted them directly into our AgentSpeak(L++)
definition and syntactically denoted plans and goals as literals. We inherited MECCA’s
tasks as actions, which we also represented as literals. But in contrast to our work
MECCA uses a more detailed structure, e.g. for scheduled plans [19, Chapter 3.1],
which are based on a cost function. Our concept does not support such scheduled plans
from an explicit modelling perspective, but supports the cost function concept and plan-
scheduling during runtime.

LightJason uses a more generalised and parametrisable approach, but is conceptually
very similar to MECCA. In each cycle LightJason’s agents execute every plan that can
be instantiated, i.e. plans which plan conditions evaluate true: This instantiation
process is called the unification process of a goal literal into a matching plan literal.
After that the plan condition, which is also supported in MECCA [19, Table 1], will be
evaluated. This plan condition can contain a score value (representing the cost for each
plan’s execution), which can be set by the underlying software component.

Another concept we adopted from MECCA is the head-communicator-interface [19,
Chapter 3] which allowed us to describe the agent as a “data-streaming process”. From
the software-architecture point of view agent-mind and agent-body are detached soft-
ware components. The agent-mind is a generic component, which gets implemented
in the AgentSpeak(L++) language, whereas the agent-body is designed as a domain-
dependent component. In our approach the body creates the logical elements and calls
the mind’s functions with literals as parameters. We implemented this mechanism by
using a streaming process, in which data can flow between body and mind continu-
ously to maximise efficiency and throughput. This approach allowed us to incorpo-
rate MECCA’s communication structure by using streams as means of communication
between software components. We generalised this concepts more from the technical
perspective: Plans, beliefs, actions in AgentSpeak(L++) are implemented by OOP com-
ponents in Java. Each Java component inherits from Object class and from a technical
standpoint each variable is a pointer to an object. LightJason translates the Agent-
Speak(L++) code into Java objects and all agents, which base on the same Agent-

DEPARTMENT OF INFORMATICS 6

LIGHTJASON

Speak(L++) source, share the same plan objects, because all objects are referenced by
pointers.

Based on the two-layer agent structure we implemented LightJason in an Object-
Oriented language (Java 8) with additional features of logic programming languages
and imperative components to describe the execution plan sequence (see Figure 1).

The symbolic representation of an agent’s mind is stored as logic literals, as in Pro-
log or AgentSpeak(L) . All literals of an agent are stored within a belief base for getting
access during runtime. During the agent’s execution the agent asks for particular liter-
als. This is realised by unification. As this process is run many times, we optimised
the internal data structure representing the logic elements for parallel execution and
avoiding cost-intensive back-tracking.

The Imperative Programming paradigm is used to describe the execution behaviour
of agents in LightJason (similar to the Patterns of Behaviour (PoBs) in the INTERRAP
architecture [20]). In contrast, to INTERRAP, we provide for parallel execution of
PoBs, so that each actions, assignment or expression can be run or evaluated in parallel.

Finally, LightJason is Java-based; the internal representation of agents is written in
an Object-Oriented style. With Java version 1.8, also functional programming with
lambda-expressions3 and streams4 are supported, which we make extensive use of, to
further parallelise execution and gain more scalability. By relying on a structured OOP
design with concurrent data structures we can create inheritable agent objects running
in a multithreading context, allowing easier integration with domain-specific software
systems.

4 AgentSpeak(L++) Language Definition
We regard an agent as a hybrid system, which combines different programming lan-
guage paradigms, allowing programmers to describe complex behaviour. This abstract
point of view allows a flexible structure – also for non-computer scientists – to param-
eterise or specify a software system. On the one hand, we needed a syntax definition
for defining behaviour, on the other hand, we need a straightforward and clean syntax.
The whole syntax was designed as a logic programming language, by which all ele-
ments could be reduced to terms5 and literals6, which define a symbolic representation
of behaviour and (environment) data. This allows modelling a generalised multi-agent
system, which can later be concretised for different applications, i.e. scenarios and sup-

3https://docs.oracle.com/javase/tutorial/java/javaOO/
lambdaexpressions.html

4https://docs.oracle.com/javase/8/docs/api/java/util/stream/
package-summary.html

5https://agentspeak-java.lightjason.org/rrd-output/
html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#
b4dad0fe5fbef2c0e24d9db1cc69e5a2

6https://agentspeak-java.lightjason.org/rrd-output/
html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#
f0d674f1e0ed4292267f149c5983db02

7 Technical Report IfI-16-04

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#b4dad0fe5fbef2c0e24d9db1cc69e5a2
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#b4dad0fe5fbef2c0e24d9db1cc69e5a2
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#b4dad0fe5fbef2c0e24d9db1cc69e5a2
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#f0d674f1e0ed4292267f149c5983db02
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#f0d674f1e0ed4292267f149c5983db02
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#f0d674f1e0ed4292267f149c5983db02

AgentSpeak(L++) Language Definition

ports the agent programmer to design the behaviour by scripting beliefs, rules, plans and
actions. The multi-agent system then “translates” the data between the Object-Oriented
back-end to a symbolic structure in the front-end for modelling behaviour, which can
be seen as a wrapper around datasets.

4.1 Grammar Definition

Our first contribution is the definition of a scripting language based on a modified
and extended AgentSpeak(L) grammar. For building the lexer and parser components,
we used the Java AntLR7 framework. The framework generates all required software
components based on the grammar definition. The result of this generation process is a
tree data structure, which can be processed by an abstract syntax tree (AST) visitor.

We modularised the grammar into subgrammars to obtain a more abstract structure
of the agent programming language (Figure 2). This allowed us to get a more flexible
parsing component, which could be split up into a layer-based structure. In designing
the language, we paid utmost attention to create a clean and human-readable source
code for the LightJason platform.

Figure 2 shows the main structure of our grammar definition. We referenced the
implementation in Backus-Naur form (for AntLR usage) and visualisation with a rail-
road diagram (RRD) in the repository. A full listing of the grammar can be found in
appendix A.

Agent
(collection of all elements)

AgentSpeak(L++)
(agent language elements, e.g. plans)

Complex Type
(logical language elements, e.g. literal)

Terminal Symbols
(keywords e.g. <-)

Figure 2: Modular Grammar Structure

On the language definition the ordering of the plans in each agent within the source-
code file is negligible for the runtime process. In the agent cycle all plans, for which
the plan condition evaluates true, will be triggered in parallel. As can be seen in the
following grammar modules, belief, plan and actions can be grouped into hierarchical
naming structures by slashes (/) or minuses (-). For the plan-bodies we used a more
functional definition of the elements (based on C/C++, Java syntax), therefore elements
are semicolon-separated.

7http://www.antlr.org/

DEPARTMENT OF INFORMATICS 8

http://www.antlr.org/

LIGHTJASON

4.1.1 Grammar module: Agent

The agent is structured and modularised as described in Section 3 and Figure 2. We
defined the agent grammar8 to represent the top-level structure of an agent. The under-
lying grammar structure, as can be seen in Section 4.1.3, is included into the agent’s
grammar. Based on on the structure in Figure 2 the agent’s grammar can be seen in the
RRD of Figure 3. For the full grammar specification refer to appendix A.1.

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 1/18

initial grammar rule

initial_beliefs initial_goal logicrules plans

rule to represent initial beliefs

belief

rule to represent the initial goal

EXCLAMATIONMARK atom DOT

achivement-goal action

EXCLAMATIONMARK

DOUBLEEXCLAMATIONMARK

literal

variable_evaluate

atomic annotations (without parameter)

AT ATOMIC

PARALLEL

annotation (with parameter)

AT annotation_numeric_literal

annotations (with numerical parameter)

SCORE LEFTROUNDBRACKET number RIGHTROUNDBRACKET

high-level grammar rules of AgentSpeak(L) which defines the agent

Railroad diagram for Agent grammar

Agent

agent

initial_beliefs

initial_goal

AgentSpeak

achievement_goal_action

annotation_atom

annotation_literal

annotation_numeric_literal

Figure 3: Agent RRD

4.1.2 Grammar module: Plan Bundles

For helping programmers implementing sophisticated behaviour of agents in complex
scenarios, we added plan bundles as additional structures. These collections of different
plans, logical rules and beliefs are depicted in Figure 4 (a formal definition can be seen
in appendix A.2). The bundle structure can be used for defining some generic models
of agents and can be read into the agent during instantiation. With this definition the
agent’s behaviour can be modularised and structured. A plan bundle is not directly
instantiable and can be used only in combination with an agent.

26.10.2016 Railroad diagram for PlanBundle grammar

http://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/PlanBundle.g4/index.htm#d5d44470ee036ad7cec577d70677366 17/29

variables are defined like Prolog variables, @-prefix creates a thread-safe variable

AT UPPERCASELETTER

UNDERSCORE

LOWERCASELETTER

UPPERCASELETTER

UNDERSCORE

DIGIT

SLASH

variable-evaluation will be used for an executable call like X(1,2,Y), it is possible for passing variables and parameters

variable LEFTROUNDBRACKET termlist RIGHTROUNDBRACKET

list with head-tail-annotation definition

LEFTANGULARBRACKET variable VLINE variable RIGHTANGULARBRACKET

initial grammar rule

belief logicrules plans

variable

variable_evaluate

variablelist

PlanBundle

planbundle

Terminal

Figure 4: Plan bundle RRD

4.1.3 Grammar module: AgentSpeak(L++)

The AgentSpeak(L++) grammar definition9 describes the language parts for imple-
menting the agent’s logic and is designed as an is-part-of relation to the agent grammar.
The full grammar structure is referenced in appendix A.3. In addition to the original
AgentSpeak(L) grammar we added new language structures e.g.

8https://agentspeak-java.lightjason.org/rrd-output/
html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#
b33aed8f3134996703dc39f9a7c95783

9https://agentspeak-java.lightjason.org/rrd-output/html/org/
lightjason/agentspeak/grammar/Agent.g4/index.htm

9 Technical Report IfI-16-04

https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#b33aed8f3134996703dc39f9a7c95783
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#b33aed8f3134996703dc39f9a7c95783
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#b33aed8f3134996703dc39f9a7c95783
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm

AgentSpeak(L++) Language Definition

Lambda-Expressions10 replacing classical loop structures. The expression can be run
in sequential and parallel execution mode. The RRD of the generic lambda struc-
ture can be shown in Figure 5 The following example shows the baseline defini-

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 3/18

basic executable formula

repair_formula

belief_action

deconstruct_expression

assignment_expression

unary_expression

lambda

deconstruct expression (splitting clauses)

variablelist DECONSTRUCT literal

variable

lambda expression for iteration

AT lambda_initialization RIGHTARROW variable lambda_return COLON block_formula

initialization of lambda expression

LEFTROUNDBRACKET variable

literal

RIGHTROUNDBRACKET

return argument lambda expression

VLINE variable

rule definition similar to plan

RULEOPERATOR body

rules are similar to plans but without context and trigger event

annotations literal logicalruledefinition DOT

body_formula

deconstruct_expression

lambda

lambda_initialization

lambda_return

logicalruledefinition

logicrule

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 3/18

basic executable formula

repair_formula

belief_action

deconstruct_expression

assignment_expression

unary_expression

lambda

deconstruct expression (splitting clauses)

variablelist DECONSTRUCT literal

variable

lambda expression for iteration

AT lambda_initialization RIGHTARROW variable lambda_return COLON block_formula

initialization of lambda expression

LEFTROUNDBRACKET variable

literal

RIGHTROUNDBRACKET

return argument lambda expression

VLINE variable

rule definition similar to plan

RULEOPERATOR body

rules are similar to plans but without context and trigger event

annotations literal logicalruledefinition DOT

body_formula

deconstruct_expression

lambda

lambda_initialization

lambda_return

logicalruledefinition

logicrule

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 3/18

basic executable formula

repair_formula

belief_action

deconstruct_expression

assignment_expression

unary_expression

lambda

deconstruct expression (splitting clauses)

variablelist DECONSTRUCT literal

variable

lambda expression for iteration

AT lambda_initialization RIGHTARROW variable lambda_return COLON block_formula

initialization of lambda expression

LEFTROUNDBRACKET variable

literal

RIGHTROUNDBRACKET

return argument lambda expression

VLINE variable

rule definition similar to plan

RULEOPERATOR body

rules are similar to plans but without context and trigger event

annotations literal logicalruledefinition DOT

body_formula

deconstruct_expression

lambda

lambda_initialization

lambda_return

logicalruledefinition

logicrule

Figure 5: Lambda Expression RRD with initialization and return

tion: For each element in L, push the element into the variable Y and do some-
thing, e.g.
L = collection/list/range(1, 20);
(L) -> Y : generic/print(Y);

Multi-Variable-Assignments11 replacing Prolog’s head-tail notation of lists into a more
useful structure. For example the following code will put each element of L into
the variables A...G, with G containing the tail of the list. Elements of no further
use can be discarded by the anonymous variable “_”. The Figure 6 shows the
generic structure and the following example the assignment mechanism.

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 2/18

annotation for rules and plans

annotation_atom

annotation_literal

assignment expression (for assignin a variable)

assignment_expression_singlevariable

assignment_expression_multivariable

assignment of a variable list

variablelist ASSIGN executable_term

assignment of a single variable

variable ASSIGN executable_term

belief rule

literal DOT

belief-action operator

PLUS

MINUS

literal

block-formula of subsection

LEFTCURVEDBRACKET body RIGHTCURVEDBRACKET

body_formula

plan or block body

body_formula SEMICOLON body_formula

annotations

assignment_expression

assignment_expression_multivariable

assignment_expression_singlevariable

belief

belief_action

block_formula

body

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 11/18

variable

expression

variables are defined like Prolog variables, @-prefix creates a thread-safe variable

AT UPPERCASELETTER

UNDERSCORE

LOWERCASELETTER

UPPERCASELETTER

UNDERSCORE

DIGIT

SLASH

variable-evaluation will be used for an executable call like X(1,2,Y), it is possible for passing variables and parameters

variable LEFTROUNDBRACKET termlist RIGHTROUNDBRACKET

list with head-tail-annotation definition

LEFTANGULARBRACKET variable VLINE variable RIGHTANGULARBRACKET

logical and-concationation (c-style)

&&

=

-=

/=

unification_constraint

variable

variable_evaluate

variablelist

Terminal

AND

ASSIGN

ASSIGNDECREMENT

ASSIGNDIVIDE

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 6/18

floating-point constants

PI

EULER

GRAVITY

AVOGADRO

BOLTZMANN

ELECTRON

PROTON

NEUTRON

LIGHTSPEED

INFINITY

rule for an action

literal

rule for execute a logical-rule

DOLLAR literal

variable_evaluate

executable-terms are predictable structures

string

number

logicalvalue

executable_action

executable_rule

expression

ternary_operation

logical & numeric entry rule for or-expression

expression_bracket

expression_logical_and OR expression

bracket expression

LEFTROUNDBRACKET expression RIGHTROUNDBRACKET

constant

executable_action

executable_rule

executable_term

expression

expression_bracket

Figure 6: Multi-Variable-Assignments RRD with variable and executable term

10https://agentspeak-java.lightjason.org/rrd-output/
html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#
945f3fc449518a73b9f5f32868db466c

11https://agentspeak-java.lightjason.org/rrd-output/
html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#
aaf72be46bb3458f45cf02c8858d96be

DEPARTMENT OF INFORMATICS 10

https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#945f3fc449518a73b9f5f32868db466c
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#945f3fc449518a73b9f5f32868db466c
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#945f3fc449518a73b9f5f32868db466c
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#aaf72be46bb3458f45cf02c8858d96be
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#aaf72be46bb3458f45cf02c8858d96be
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#aaf72be46bb3458f45cf02c8858d96be

LIGHTJASON

L = collection/list/range(1, 20);
[A|B|C| _ |D|E|F|G] = L;

Explicit repair-formula notation12 to get a readable structure of execution chains for
extensive error handling. The general structure in Figure 7 contains a reflexive
structure of the grammar rule. The following example shows the use of the gram-

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 5/18

repairable formula

executable_term

test_action

achievement_goal_action

LEFTSHIFT repair_formula

test-goal -rule action

QUESTIONMARK DOLLAR atom

unary expression

variable unaryoperator

atoms are defined like Prolog atoms @note internal action in Jason can begin with a dot, but here it is removed

LOWERCASELETTER LOWERCASELETTER

UPPERCASELETTER

UNDERSCORE

DIGIT

SLASH

MINUS

binary operator

ASSIGNINCREMENT

ASSIGNDECREMENT

ASSIGNMULTIPLY

ASSIGNDIVIDE

repair_formula

test_action

unary_expression

ComplexType

atom

binaryoperator

Figure 7: Repair-Formula RRD

mar structure. If the execution of plannotexist fails, the agent tries to run other-
plan immediately and if this also fails the repair-formula returns true, preventing
the currently running plan from failing.

?plannotexist << !!otherplan << true;

Multi-Plan13 like class structures for a more readable source-code without duplicating
plan names. A multi-plan (see Figure 8) is a collection of all plans, which uses
equal trigger literals. The plan main is defined in three parts. The first plan (line

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 4/18

optional (prolog) rules

logicrule

plan modified against the original Jason grammar, so a context is optional (on default true) and the plan body is also optional. The definition is trigger name [
plancontent] .

annotations plan_trigger literal plandefinition DOT

plan trigger for a belief

PLUS

MINUS

plan trigger for a goal

PLUS

MINUS

EXCLAMATIONMARK

plan trigger which can match a goal or belief

plan_belief_trigger

plan_goal_trigger

plan body & context definition The definition is [: condition] [<- body]

COLON expression LEFTARROW body

agent plans rule @note one plan must exists

plan

logicrules

plan

plan_belief_trigger

plan_goal_trigger

plan_trigger

plandefinition

plans

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 4/18

optional (prolog) rules

logicrule

plan modified against the original Jason grammar, so a context is optional (on default true) and the plan body is also optional. The definition is trigger name [
plancontent] .

annotations plan_trigger literal plandefinition DOT

plan trigger for a belief

PLUS

MINUS

plan trigger for a goal

PLUS

MINUS

EXCLAMATIONMARK

plan trigger which can match a goal or belief

plan_belief_trigger

plan_goal_trigger

plan body & context definition The definition is [: condition] [<- body]

COLON expression LEFTARROW body

agent plans rule @note one plan must exists

plan

logicrules

plan

plan_belief_trigger

plan_goal_trigger

plan_trigger

plandefinition

plans

Figure 8: Plan RRD

2) is run, iff there exists a belief, which value can be unified to a string, the second
plan (line 3) is run iff the belief value can be unified to a number value and the
number is greater than 1000 and the third plan (line 4) is run if main is triggered
(default behaviour of the plan)

+!main
: >>(hallo(X), generic/type/isstring(X)) <- generic/print("1st

plan: unification variable", X)

12https://agentspeak-java.lightjason.org/rrd-output/
html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#
503f34271b101269197f766a6b90e4a9

13https://agentspeak-java.lightjason.org/rrd-output/
html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#
5fc25157650d0cb24f02216d904584df

11 Technical Report IfI-16-04

https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#503f34271b101269197f766a6b90e4a9
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#503f34271b101269197f766a6b90e4a9
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#503f34271b101269197f766a6b90e4a9
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#5fc25157650d0cb24f02216d904584df
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#5fc25157650d0cb24f02216d904584df
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#5fc25157650d0cb24f02216d904584df

AgentSpeak(L++) Language Definition

: >>(hallo(X), generic/type/isnumeric(X) && X > 1000) <-
generic/print("2nd plan: unification of", X)

<- generic/print("default plan").

DEPARTMENT OF INFORMATICS 12

LIGHTJASON

4.1.4 Grammar module: ComplexType

The ComplexType grammar14 represents the logic components of our language. We
are reflecting the Prolog syntax and this structure has got the relation is-part-of of the
AgentSpeak(L++) grammar. The full grammar listing is referenced in appendix A.4.
The main Prolog structure uses terms, literals, atoms and variables. We are using this
baseline structures and extend the definition.

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 10/18

terms are non-predictable structures

string

number

logicalvalue

literal

variable

variablelist

LEFTANGULARBRACKET termlist RIGHTANGULARBRACKET

expression

ternary_operation

generic list equal to collcations with empty clause

term COMMA term

ternary operation

expression ternary_operation_true ternary_operation_false

ternary operation false-rule

COLON executable_term

ternary operation true-rule

QUESTIONMARK executable_term

unary operator

INCREMENT

DECREMENT

unification expression

AT RIGHTSHIFT literal

LEFTROUNDBRACKET literal COMMA unification_constraint RIGHTROUNDBRACKET

term

termlist

ternary_operation

ternary_operation_false

ternary_operation_true

unaryoperator

unification

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 14/30

positive integer number

PLUS DIGIT

clause represent a literal structure existing atom, optional argument, optional annotations

AT

STRONGNEGATION

atom LEFTROUNDBRACKET termlist RIGHTROUNDBRACKET LEFTANGULARBRACKET literalset RIGHTANGULARBRACKET

specified list only with literals and empty clause

literal COMMA literal

boolean values

TRUE

FALSE

integernumber_positive

literal

literalset

logicalvalue

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 5/18

repairable formula

executable_term

test_action

achievement_goal_action

LEFTSHIFT repair_formula

test-goal -rule action

QUESTIONMARK DOLLAR atom

unary expression

variable unaryoperator

atoms are defined like Prolog atoms @note internal action in Jason can begin with a dot, but here it is removed

LOWERCASELETTER LOWERCASELETTER

UPPERCASELETTER

UNDERSCORE

DIGIT

SLASH

MINUS

binary operator

ASSIGNINCREMENT

ASSIGNDECREMENT

ASSIGNMULTIPLY

ASSIGNDIVIDE

repair_formula

test_action

unary_expression

ComplexType

atom

binaryoperator

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 11/18

variable

expression

variables are defined like Prolog variables, @-prefix creates a thread-safe variable

AT UPPERCASELETTER

UNDERSCORE

LOWERCASELETTER

UPPERCASELETTER

UNDERSCORE

DIGIT

SLASH

variable-evaluation will be used for an executable call like X(1,2,Y), it is possible for passing variables and parameters

variable LEFTROUNDBRACKET termlist RIGHTROUNDBRACKET

list with head-tail-annotation definition

LEFTANGULARBRACKET variable VLINE variable RIGHTANGULARBRACKET

logical and-concationation (c-style)

&&

=

-=

/=

unification_constraint

variable

variable_evaluate

variablelist

Terminal

AND

ASSIGN

ASSIGNDECREMENT

ASSIGNDIVIDE

Figure 9: Logical Language RRD with term, literal, atom and variable definition

Built-in numerical constants15 added for calculations: avogadro, boltzmann, electron,
euler, gravity, infinity, lightspeed, neutron, pi, proton

Floating- and Integer representation16 of numbers for different arithmetic execution

14https://agentspeak-java.lightjason.org/rrd-output/
html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#
3e10f8c809242d3a0f94c18e7addb866

15https://agentspeak-java.lightjason.org/rrd-output/
html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#
109c699155ebade293e19e994773be09

16https://agentspeak-java.lightjason.org/rrd-output/
html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#
b1bc248a7ff2b2e95569f56de68615df

13 Technical Report IfI-16-04

https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#3e10f8c809242d3a0f94c18e7addb866
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#3e10f8c809242d3a0f94c18e7addb866
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#3e10f8c809242d3a0f94c18e7addb866
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#109c699155ebade293e19e994773be09
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#109c699155ebade293e19e994773be09
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#109c699155ebade293e19e994773be09
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#b1bc248a7ff2b2e95569f56de68615df
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#b1bc248a7ff2b2e95569f56de68615df
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#b1bc248a7ff2b2e95569f56de68615df

AgentSpeak(L++) Language Definition

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 9/18

negative integer number

MINUS DIGIT

positive integer number

PLUS DIGIT

clause represent a literal structure existing atom, optional argument, optional annotations

AT

STRONGNEGATION

atom LEFTROUNDBRACKET termlist RIGHTROUNDBRACKET LEFTANGULARBRACKET literalset

specified list only with literals and empty clause

literal COMMA literal

boolean values

TRUE

FALSE

default behaviour in Jason is only a floating-point number (double) but here exists the difference between floating and integral number types within the
grammar, the div-operator (integer division) is removed, also definied constants are used

floatnumber

integernumber

string define with single or double quotes

SINGLEQUOTESTRING

DOUBLEQUOTESTRING

integernumber_negative

integernumber_positive

literal

literalset

logicalvalue

number

string

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 8/18

numeric element for expression

number

variable

executable_action

executable_rule

LEFTROUNDBRACKET expression_numeric RIGHTROUNDBRACKET

numeric multiply-expression

expression_numeric_power SLASH

MODULO

MULTIPLY

expression_numeric

numeric pow-expression

expression_numeric_element POW expression_numeric

relation expression

expression_numeric_additive LESS

LESSEQUAL

GREATER

GREATEREQUAL

expression_numeric

floating-point number

MINUS DIGIT DOT DIGIT

constant

integer number

integernumber_positive

integernumber_negative

expression_numeric_element

expression_numeric_multiplicative

expression_numeric_power

expression_numeric_relation

floatnumber

integernumber

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 9/18

negative integer number

MINUS DIGIT

positive integer number

PLUS DIGIT

clause represent a literal structure existing atom, optional argument, optional annotations

AT

STRONGNEGATION

atom LEFTROUNDBRACKET termlist RIGHTROUNDBRACKET LEFTANGULARBRACKET literalset

specified list only with literals and empty clause

literal COMMA literal

boolean values

TRUE

FALSE

default behaviour in Jason is only a floating-point number (double) but here exists the difference between floating and integral number types within the
grammar, the div-operator (integer division) is removed, also definied constants are used

floatnumber

integernumber

string define with single or double quotes

SINGLEQUOTESTRING

DOUBLEQUOTESTRING

integernumber_negative

integernumber_positive

literal

literalset

logicalvalue

number

string

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 9/18

negative integer number

MINUS DIGIT

positive integer number

PLUS DIGIT

clause represent a literal structure existing atom, optional argument, optional annotations

AT

STRONGNEGATION

atom LEFTROUNDBRACKET termlist RIGHTROUNDBRACKET LEFTANGULARBRACKET literalset

specified list only with literals and empty clause

literal COMMA literal

boolean values

TRUE

FALSE

default behaviour in Jason is only a floating-point number (double) but here exists the difference between floating and integral number types within the
grammar, the div-operator (integer division) is removed, also definied constants are used

floatnumber

integernumber

string define with single or double quotes

SINGLEQUOTESTRING

DOUBLEQUOTESTRING

integernumber_negative

integernumber_positive

literal

literalset

logicalvalue

number

string

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 8/18

numeric element for expression

number

variable

executable_action

executable_rule

LEFTROUNDBRACKET expression_numeric RIGHTROUNDBRACKET

numeric multiply-expression

expression_numeric_power SLASH

MODULO

MULTIPLY

expression_numeric

numeric pow-expression

expression_numeric_element POW expression_numeric

relation expression

expression_numeric_additive LESS

LESSEQUAL

GREATER

GREATEREQUAL

expression_numeric

floating-point number

MINUS DIGIT DOT DIGIT

constant

integer number

integernumber_positive

integernumber_negative

expression_numeric_element

expression_numeric_multiplicative

expression_numeric_power

expression_numeric_relation

floatnumber

integernumber

Figure 10: Number structure RRD with integer (positive & negative) and floating point
number definition

Parallel execution notation allows to define thread-safe variables, parallel execution
of actions, lambda-expression or logic-rule execution
L = collection/list/range(1, 20);
@(L) -> Y | R : R = Y+1;
@>>(hallo(Unify), generic/type/isnumeric(Unify) && (Unify >

200))

Ternary operator17 to remove classical if-else statements to get a more readable code

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 10/18

terms are non-predictable structures

string

number

logicalvalue

literal

variable

variablelist

LEFTANGULARBRACKET termlist RIGHTANGULARBRACKET

expression

ternary_operation

generic list equal to collcations with empty clause

term COMMA term

ternary operation

expression ternary_operation_true ternary_operation_false

ternary operation false-rule

COLON executable_term

ternary operation true-rule

QUESTIONMARK executable_term

unary operator

INCREMENT

DECREMENT

unification expression

AT RIGHTSHIFT literal

LEFTROUNDBRACKET literal COMMA unification_constraint RIGHTROUNDBRACKET

term

termlist

ternary_operation

ternary_operation_false

ternary_operation_true

unaryoperator

unification

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 10/18

terms are non-predictable structures

string

number

logicalvalue

literal

variable

variablelist

LEFTANGULARBRACKET termlist RIGHTANGULARBRACKET

expression

ternary_operation

generic list equal to collcations with empty clause

term COMMA term

ternary operation

expression ternary_operation_true ternary_operation_false

ternary operation false-rule

COLON executable_term

ternary operation true-rule

QUESTIONMARK executable_term

unary operator

INCREMENT

DECREMENT

unification expression

AT RIGHTSHIFT literal

LEFTROUNDBRACKET literal COMMA unification_constraint RIGHTROUNDBRACKET

term

termlist

ternary_operation

ternary_operation_false

ternary_operation_true

unaryoperator

unification

25.10.2016 Railroad diagram for Agent grammar

https://lightjason.github.io/AgentSpeak/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm 10/18

terms are non-predictable structures

string

number

logicalvalue

literal

variable

variablelist

LEFTANGULARBRACKET termlist RIGHTANGULARBRACKET

expression

ternary_operation

generic list equal to collcations with empty clause

term COMMA term

ternary operation

expression ternary_operation_true ternary_operation_false

ternary operation false-rule

COLON executable_term

ternary operation true-rule

QUESTIONMARK executable_term

unary operator

INCREMENT

DECREMENT

unification expression

AT RIGHTSHIFT literal

LEFTROUNDBRACKET literal COMMA unification_constraint RIGHTROUNDBRACKET

term

termlist

ternary_operation

ternary_operation_false

ternary_operation_true

unaryoperator

unification

Figure 11: Ternary operator RRD with true and false part

Z = math/statistic/randomsimple();
Text = Z > 100 ? "Z greater equal 100" : "Z is less 100";
generic/print("ternary operator", Text);

17https://agentspeak-java.lightjason.org/rrd-output/
html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#
a3e531edbe77ec3a390a2671be0905b8

DEPARTMENT OF INFORMATICS 14

https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#a3e531edbe77ec3a390a2671be0905b8
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#a3e531edbe77ec3a390a2671be0905b8
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#a3e531edbe77ec3a390a2671be0905b8

LIGHTJASON

Variable execution18 to executed variables directly as a plan- or logic-rule definition

PLAN = "mytest";
!!PLAN;
!!PLAN(5);

4.1.5 Grammar module: Terminal

The terminal symbols19 of the grammar were defined in a structure, which is in the re-
lation is-part-of of the ComplexType grammar. This structures allows fast modification
of our grammar. Some features are:

• Strings can be written in single and double quotes,

• numerical constants are defined with human-readable names and

• different styles of source-code documentation are supported.

All terminal symbols are listed in appendix A.5

4.2 Built-in Actions

The language structure and the underlying architecture of our implementation allows
to create a flexible action interface. From a software-developing perspective an action
is a method inside a class. An agent can only be successfully instantiated if every de-
noted action exists. To ensure this, every action is checked during parse-time. If the
action does not exist, the parsing process fails. In comparison to Jason, we can de-
tect before the agent is running, if the agent source code is syntactically correct and
all actions can be executed. The built-in actions are organised in packages. In our
framework we currently support actions regarding the following categories: Bindings
to Java objects, general (e.g. print output, agent sleeping or converting data types),
string operations, math, Basic Linear Algebra Subprograms (BLAS), interpolation al-
gorithms, Linear Programming, statistics, cryptographic actions, collections (e.g. sets,
tuples, (multi-)maps and lists), date and time manipulation. For a complete overview
of these actions and how they can be implemented, we refer to our example agents20 in
appendix B.

18https://agentspeak-java.lightjason.org/rrd-output/
html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#
a8a6a0dad629d3c681de3e882cbc44a9

19https://agentspeak-java.lightjason.org/rrd-output/
html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#
558ffc8f5770d8e4f95f51d822685532

20https://github.com/LightJason/AgentSpeak-Java/tree/master/src/test/
resources/agent

15 Technical Report IfI-16-04

https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#a8a6a0dad629d3c681de3e882cbc44a9
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#a8a6a0dad629d3c681de3e882cbc44a9
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#a8a6a0dad629d3c681de3e882cbc44a9
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#558ffc8f5770d8e4f95f51d822685532
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#558ffc8f5770d8e4f95f51d822685532
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#558ffc8f5770d8e4f95f51d822685532
https://github.com/LightJason/AgentSpeak-Java/tree/master/src/test/resources/agent
https://github.com/LightJason/AgentSpeak-Java/tree/master/src/test/resources/agent

Evaluation and Discussion

Actions

Math

Interpolate

Linear-
program

BLAS

Vector

Matrix

Shape

Statistic

Collection

List

Multimap

Map

Tuple

Generic

Agent

Datetime

Storage

String

Type

crypto

Figure 12: Map of built-in actions packages

DEPARTMENT OF INFORMATICS 16

LIGHTJASON

5 Evaluation and Discussion

5.1 Evacuation scenario

In this chapter, we illustrate the capabilities of LightJason by presenting a grid-based
evacuation scenario, where agents need to reach an exit to leave the grid. We chose a
scenario with 250 × 250 cells and rectangular obstacles as depicted in Figure 13 and
animated in Figure 14. Each agent received the same exit destination (140, 140);

Figure 13: Screenshot of evacuation scenario. Obstacles, agents need to bypass, are
shown as yellow rectangles, the exit as a red dot.

it disappeared once it reached the approximate destination (±10 cells). The Agent-
Speak(L++) code for the corresponding agent is displayed in Listing 1 below.

For finding a route to the exit the agents used the Jump Point Search (JPS+) with
Goal Bounding [21] algorithm, which, after an initial O(n2) preprocessing of the grid,
outperforms A∗ by two to three orders of magnitude in speed. In our example we
grouped all plans which describe a moving behaviour under “movement/...” (lines
11, 16, 20, 25, 29, 35, 43) and similarly, plans related to reaching a certain location
under “position/...” (line 49).

17 Technical Report IfI-16-04

Evaluation and Discussion

Figure 14: Animation of evacuation scenario.

DEPARTMENT OF INFORMATICS 18

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

LIGHTJASON

Listing 1: Walking Agent
1 // initial-goal
2 !main.

4 // initial plan (triggered by the initial-goal)
5 // calculates the initial route
6 +!main <-
7 route/set/start(140, 140);
8 !movement/walk/forward.

10 // walk straight forward into the direction of the goal-position
11 +!movement/walk/forward <-
12 move/forward();
13 !movement/walk/forward.

15 // walk straight forward fails then go left
16 -!movement/walk/forward <-
17 !movement/walk/left.

19 // walk left - direction 90 degree to the goal position
20 +!movement/walk/left <-
21 move/left();
22 !movement/walk/forward.

24 // walk left fails then go right
25 -!movement/walk/left <-
26 !movement/walk/right.

28 // walk right - direction 90 degree to the goal position
29 +!movement/walk/right <-
30 move/right();
31 !movement/walk/forward.

33 // walk right fails then sleep and hope everything will be
34 // fine later, wakeup plan will be triggered after sleeping
35 -!movement/walk/right <-
36 T = math/statistic/randomsimple() * 10 + 1;
37 T = generic/type/toint(T);
38 T = math/min(5, T);
39 generic/sleep(T).

41 // if the agent is not walking because speed is
42 // low the agent increments the current speed
43 +!movement/standstill <-
44 >>attribute/speed(S);
45 S = generic/type/toint(S) + 1;
46 +attribute/speed(S);
47 !movement/walk/forward.

49 +!position/achieve(P, D) <-
50 route/next;
51 !movement/walk/forward.

53 // if the agent woke up the speed is set to 1 and the agent
54 // starts walking to the next goal-position

19 Technical Report IfI-16-04

Evaluation and Discussion

55 +!wakeup <-
56 +attribute/speed(1);
57 !movement/walk/forward.

Lines 6 to 8 define the plan of the initial goal, which calculates a route for the agent
from the initialised position to the goal-position (140, 140). The routing action in
line 7 calculates a list of landmarks, which are sub-goals for the agent. The agent
then tries to follow-up on each landmark to reach the end-position. Between
the landmarks the agent uses the plan structure to calculate the next concrete
position. After the routing algorithm finishes, the agent starts walking in the next
cycle (line 8).

Lines 49 to 51 define the plan, which is triggered by the backend, if the agent is near-
by (within a radius) the next landmark. The radius is defined similar to the speed
belief. In this plan the agent slows down in the vicinity of the landmark.

Lines 55 to 57 define the wake-up plan which is triggered automatically, if the sleeping
time ends. The agent resets the current speed to 1 (line 56) and starts walking
forward again (line 57).

5.2 Preliminary validation
To validate our results, we conducted first tests with LightJason implementation of the
evacuation scenario. The goal is to investigate whether the design and implementa-
tion of LightJason leads to good scalability and cycle consistency regarding the routing
model, and number of concurrent running agents. We ran the grid-based scenario as
presented in Section 5.1 on an iMac equipped with an Intel R© CoreTM i7-3770 with 16
GB RAM. Figure 15 illustrates the run-time behaviour of the agents. It (not surpris-
ingly) shows that with an increasing number of agents, each agent needs more cycles to
complete its task. This can be attributed to additional invocations of repair plans when
an agent’s path got obstructed by other agents. This scales sub-linearly up to roughly
1000 agents. After that point, the mainly egoistic approach of each agent prevents them
to find a free path to the exit, resulting in plan-failures and necessary re-routing.

From a technical perspective we observed that the CPU utilisation is constantly at
around 70% for 15000 agents. The constant CPU load shows that the workload in-
duced by the agents is distributed fairly and evenly, avoiding spikes and idle times.
Furthermore we observed a low utilisation of the JVM’s survivor space (roughly 3.5
MB after the initialisation spike), reflecting the design in relying on lazy bindings and
LightJason’s ability to share references to concurrently used data structures, e.g. plans,
which only differ in their context and parameters.

5.3 Discussion
In this paper we presented our design and implementation of an agent framework,

introducing LightJason , an AgentSpeak(L) variant. The key aspects we focused on

DEPARTMENT OF INFORMATICS 20

LIGHTJASON

102 103 104

number of agents

102

103

104

si
m
u
la
ti
o
n
st
ep

s

agents steps agents steps agents steps
15 169 120 207 750 258
30 209 150 186 1050 429
45 169 225 210 1500 449
60 194 300 223 2250 826
75 206 450 241 3000 1334
90 197 600 376 6000 2588

15000 5638

�1

number of agents

si
m

ul
at

io
n

st
ep

s

Figure 15: Results: Number of agents plotted against number of cycles until all agents
reached their destinations (top). CPU load (middle) and the JVM’s survivor space
(bottom) for the run with 15000 agents.

21 Technical Report IfI-16-04

Conclusion & Outlook

were modularity, flexibility, scalability and deterministic execution behaviour.
The AgentSpeak(L++) language supported by LightJason reflects AgentSpeak(L) as

implemented by [4], we differ on a number of aspects, in terms of the language features
and – to a larger extent – in the software architecture underlying the implementation.
Among others the most notable additions to AgentSpeak(L) are lambda-expressions,
multi-plan definitions, explicit repair-planning, multi-variable assignments, parallel ex-
ecution and
thread-safe variables.

When considering to port an existing Jason code to LightJason it is important to
understand, that by design in LightJason all plans which conditions evaluate to true get
instantiated. As each agent can instantiate multiple plans concurrently and all agents
run concurrently to each other, agents can execute actions which could result in race
conditions and may have undesired consequences. Agent developers have to take this
into account to avoid unwanted side effects. Here we argue, that in comparison to
Jason , a non-synchronised system’s behaviour results in a considerably more plausible
multi-agent system, considering the requirements formulated by [17].
Additional Features Most of the AgentSpeak(L) expressions find their equivalents in
LightJason’s AgentSpeak(L++) . Major additions are expressions for parallel execu-
tion and unification (@). As it is in general possible to design an agent to run plans
sequentially, we argue, that for performance reasons it is sensible to make use of par-
allel execution whenever possible. A second aspect we would like to mention here are
plan repairs. AgentSpeak(L) recovers from failed plans by making use of the -!plan
triggering event. In AgentSpeak(L++) we extended this concept.
Jason 2.0 With the quite recent release of Jason 2.0, there now exist new features21

in Jason which are similar, but independently developed, to some of our own. Jason
2.0 introduces modules and namespaces to modularise beliefs, goals and plans. In our
approach we go even further by integrating those concepts deeply into the fundamental
agent grammar. Thus it is possible for us to, for example, modularise actions, func-
tions or beliefs by building hierarchical structures in arbitrary depth allowing greater
flexibility than in Jason . Another new feature of Jason 2.0 are concurrent courses of
actions [16]. As parallel execution is a fundamental aspect of scalability, we made this
an integral part of LightJason’s architecture by mainly using Java 1.8 developing tech-
niques and features, e.g parallel streams to enable concurrent operations at a very fine
granularity.

6 Conclusion & Outlook
The contribution of this paper is a flexible agent programming framework LightJason ,
which can be easily integrated into existing systems. The key features of LightJason
are the simplification of the agent’s reasoning cycle and the support of some impor-
tant requirements including modularity, maintainability, and scalability, combined with

21https://github.com/jason-lang/jason/blob/master/release-notes.adoc#
version-20

DEPARTMENT OF INFORMATICS 22

https://github.com/jason-lang/jason/blob/master/release-notes.adoc#version-20
https://github.com/jason-lang/jason/blob/master/release-notes.adoc#version-20

LIGHTJASON

state-of-the-art techniques in software development. At the core of LightJason is Agent-
Speak(L++) , a declarative agent scripting language extending Jason . We provide a for-
mal grammar definition describing the features of AgentSpeak(L++) . For the sake of
usability, LightJason supports many built-in actions and a structure to load actions in a
pre-processing step of the parser. Thus, by parsing the agent’s source code it is possible
to check that the agent is syntactically correct and can be executed. We further provide
generator structures that enable automated creation of large numbers of agents which
can be further customised by the user. We also support a fully concurrent and parallel
agent execution model of an agent.

This paper describes ongoing work. The next steps will involve a formal definition
of the semantics of AgentSpeak(L++) . The reader will have noticed that the current
AgentSpeak(L++) language does not contain language elements for communication.
This is intentional, because in our view, communication is a matter of the runtime sys-
tem rather than of the compilation mechanism. Yet, agent communication is one of
the next features to be added to LightJason . Also, while we performed an initial qual-
itative comparison with Jason , a thorough experimental benchmarking remains to be
performed.

The LightJason project can be found under https://lightjason.org provid-
ing further documentation22 and source code23.

22https://agentspeak-java.lightjason.org/index.html
23https://github.com/LightJason/AgentSpeak-Java

23 Technical Report IfI-16-04

https://lightjason.org
https://agentspeak-java.lightjason.org/index.html
https://github.com/LightJason/AgentSpeak-Java

Grammar Definition

Appendices
A Grammar Definition

A.1 Agent Grammar
agent::= [〈initial_beliefs〉? 〈initial_goal〉? 〈logicrules〉? 〈plans〉]

initial_beliefs::= 〈belief〉+
initial_goal::= [〈EXCLAMATIONMARK〉 〈atom〉 〈DOT〉]

A.2 Plan Bundle Grammar
planbundle::= [〈belief〉* 〈logicrules〉? 〈plans〉]

A.3 AgentSpeak(L++) Grammar
achievement_goal_action::= [[〈EXCLAMATIONMARK〉

| 〈DOUBLEEXCLAMATIONMARK〉] [〈literal〉
| 〈variable_evaluate〉]]

annotation_atom::= [〈AT〉 [〈ATOMIC〉
| 〈PARALLEL〉]]

annotation_literal::= [〈AT〉 〈annotation_numeric_literal〉]

annotation_numeric_literal::= [〈SCORE〉 〈LEFTROUNDBRACKET〉 〈number〉 〈RIGHTROUNDBRACKET〉
]

annotations::= [〈annotation_atom〉
| 〈annotation_literal〉]+

assignment_expression::= 〈assignment_expression_singlevariable〉
| 〈assignment_expression_multivariable〉

assignment_expression_multivariable::= [〈variablelist〉 〈ASSIGN〉 〈executable_term〉
]

assignment_expression_singlevariable::= [〈variable〉 〈ASSIGN〉 〈executable_term〉]

belief::= [〈literal〉 〈DOT〉]

belief_action::= [[〈PLUS〉
| 〈MINUS〉] 〈literal〉]

block_formula::= [〈LEFTCURVEDBRACKET〉 〈body〉 〈RIGHTCURVEDBRACKET〉
]

| 〈body_formula〉
body::= [〈body_formula〉 [[〈SEMICOLON〉 〈body_formula〉]]*]

DEPARTMENT OF INFORMATICS 24

LIGHTJASON

body_formula::= 〈repair_formula〉
| 〈belief_action〉
| 〈deconstruct_expression〉
| 〈assignment_expression〉
| 〈unary_expression〉
| 〈lambda〉

deconstruct_expression::= [〈variablelist〉 〈DECONSTRUCT〉 [〈literal〉
| 〈variable〉]]

lambda::= [〈AT〉? 〈lambda_initialization〉 〈RIGHTARROW〉 〈variable〉 〈lambda_return〉?
〈COLON〉 〈block_formula〉]

lambda_initialization::= [〈LEFTROUNDBRACKET〉 [〈variable〉
| 〈literal〉] 〈RIGHTROUNDBRACKET〉]

lambda_return::= [〈VLINE〉 〈variable〉]

logicalruledefinition::= [〈RULEOPERATOR〉 〈body〉]

logicrule::= [〈annotations〉? 〈literal〉 〈logicalruledefinition〉+ 〈DOT〉]

logicrules::= 〈logicrule〉+
plan::= [〈annotations〉? 〈plan_trigger〉 〈literal〉 〈plandefinition〉* 〈DOT〉]

plan_belief_trigger::= 〈PLUS〉
| 〈MINUS〉

plan_goal_trigger::= [[〈PLUS〉
| 〈MINUS〉] 〈EXCLAMATIONMARK〉]

plan_trigger::= [〈plan_belief_trigger〉
| 〈plan_goal_trigger〉]

plandefinition::= [[[〈COLON〉 〈expression〉]]? 〈LEFTARROW〉 〈body〉]

plans::= 〈plan〉+
repair_formula::= [[〈executable_term〉

| 〈test_action〉
| 〈achievement_goal_action〉] [[〈LEFTSHIFT〉 〈repair_formula〉]]?]

test_action::= [〈QUESTIONMARK〉 〈DOLLAR〉? 〈atom〉]

unary_expression::= [〈variable〉 〈unaryoperator〉]

A.4 ComplexType Grammar
atom::= [〈LOWERCASELETTER〉 [〈LOWERCASELETTER〉

| 〈UPPERCASELETTER〉
| 〈UNDERSCORE〉
| 〈DIGIT〉
| 〈SLASH〉
| 〈MINUS〉]*]

25 Technical Report IfI-16-04

Grammar Definition

binaryoperator::= 〈ASSIGNINCREMENT〉
| 〈ASSIGNDECREMENT〉
| 〈ASSIGNMULTIPLY〉
| 〈ASSIGNDIVIDE〉

constant::= 〈PI〉
| 〈EULER〉
| 〈GRAVITY〉
| 〈AVOGADRO〉
| 〈BOLTZMANN〉
| 〈ELECTRON〉
| 〈PROTON〉
| 〈NEUTRON〉
| 〈LIGHTSPEED〉
| 〈INFINITY〉

executable_action::= 〈literal〉
executable_rule::= [〈DOLLAR〉 [〈literal〉

| 〈variable_evaluate〉]]

executable_term::= 〈string〉
| 〈number〉
| 〈logicalvalue〉
| 〈executable_action〉
| 〈executable_rule〉
| 〈expression〉
| 〈ternary_operation〉

expression::= 〈expression_bracket〉
| [〈expression_logical_and〉 [[〈OR〉 〈expression〉]]*]

expression_bracket::= [〈LEFTROUNDBRACKET〉 〈expression〉 〈RIGHTROUNDBRACKET〉
]

expression_logical_and::= [〈expression_logical_xor〉 [[〈AND〉 〈expression〉]]*]

expression_logical_element::= 〈logicalvalue〉
| 〈variable〉
| 〈executable_action〉
| 〈executable_rule〉
| 〈unification〉

expression_logical_negation::= [〈STRONGNEGATION〉 〈expression〉]

expression_logical_xor::= [[〈expression_logical_negation〉
| 〈expression_logical_element〉
| 〈expression_numeric〉] [[〈XOR〉 〈expression〉]]*]

expression_numeric::= [〈expression_numeric_relation〉 [[[〈EQUAL〉
| 〈NOTEQUAL〉] 〈expression_numeric〉]]?]

DEPARTMENT OF INFORMATICS 26

LIGHTJASON

expression_numeric_additive::= [〈expression_numeric_multiplicative〉 [[[〈PLUS〉
| 〈MINUS〉] 〈expression_numeric〉]]?]

expression_numeric_element::= 〈number〉
| 〈variable〉
| 〈executable_action〉
| 〈executable_rule〉
| [〈LEFTROUNDBRACKET〉 〈expression_numeric〉 〈RIGHTROUNDBRACKET〉

]

expression_numeric_multiplicative::= [〈expression_numeric_power〉 [[[〈SLASH〉
| 〈MODULO〉
| 〈MULTIPLY〉] 〈expression_numeric〉]]?]

expression_numeric_power::= [〈expression_numeric_element〉 [[〈POW〉 〈expression_numeric〉
]]?]

expression_numeric_relation::= [〈expression_numeric_additive〉 [[[〈LESS〉
| 〈LESSEQUAL〉
| 〈GREATER〉
| 〈GREATEREQUAL〉] 〈expression_numeric〉]]?]

floatnumber::= [〈MINUS〉? [[〈DIGIT〉+ 〈DOT〉 〈DIGIT〉+]
| 〈constant〉]]

integernumber::= 〈integernumber_positive〉
| 〈integernumber_negative〉

integernumber_negative::= [〈MINUS〉 〈DIGIT〉+]

integernumber_positive::= [〈PLUS〉? 〈DIGIT〉+]

literal::= [[〈AT〉
| 〈STRONGNEGATION〉]? 〈atom〉 [[〈LEFTROUNDBRACKET〉 〈termlist〉?
〈RIGHTROUNDBRACKET〉]]? [[〈LEFTANGULARBRACKET〉 〈literalset〉?
〈RIGHTANGULARBRACKET〉]]?]

literalset::= [〈literal〉 [[〈COMMA〉 〈literal〉]]*]

logicalvalue::= 〈TRUE〉
| 〈FALSE〉

number::= 〈floatnumber〉
| 〈integernumber〉

string::= 〈SINGLEQUOTESTRING〉
| 〈DOUBLEQUOTESTRING〉

term::= 〈string〉
| 〈number〉
| 〈logicalvalue〉
| 〈literal〉
| 〈variable〉

27 Technical Report IfI-16-04

Grammar Definition

| 〈variablelist〉
| [〈LEFTANGULARBRACKET〉 〈termlist〉 〈RIGHTANGULARBRACKET〉]
| 〈expression〉
| 〈ternary_operation〉

termlist::= [〈term〉 [[〈COMMA〉 〈term〉]]*]

ternary_operation::= [〈expression〉 〈ternary_operation_true〉 〈ternary_operation_false〉
]

ternary_operation_false::= [〈COLON〉 〈executable_term〉]

ternary_operation_true::= [〈QUESTIONMARK〉 〈executable_term〉]

unaryoperator::= 〈INCREMENT〉
| 〈DECREMENT〉

unification::= [〈AT〉? 〈RIGHTSHIFT〉 [〈literal〉
| [〈LEFTROUNDBRACKET〉 〈literal〉 〈COMMA〉 〈unification_constraint〉 〈RIGHTROUNDBRACKET〉

]]]

unification_constraint::= 〈variable〉
| 〈expression〉

variable::= [〈AT〉? [〈UPPERCASELETTER〉
| 〈UNDERSCORE〉] [〈LOWERCASELETTER〉
| 〈UPPERCASELETTER〉
| 〈UNDERSCORE〉
| 〈DIGIT〉
| 〈SLASH〉]*]

variable_evaluate::= [〈variable〉 [[〈LEFTROUNDBRACKET〉 〈termlist〉 〈RIGHTROUNDBRACKET〉
]]?]

variablelist::= [〈LEFTANGULARBRACKET〉 〈variable〉 [[〈VLINE〉 〈variable〉]]*
〈RIGHTANGULARBRACKET〉]

DEPARTMENT OF INFORMATICS 28

LIGHTJASON

A.5 Terminal Grammar

AND::= ‘&&’

ASSIGN::= ‘=’

ASSIGNDECREMENT::= ‘-=’

ASSIGNDIVIDE::= ‘/=’

ASSIGNINCREMENT::= ‘+=’

ASSIGNMULTIPLY::= ‘*=’

AT::= ‘@’

ATOMIC::= ‘atomic’

AVOGADRO::= ‘avogadro’

BLOCKCOMMENT::= [‘/*’ ‘any char’*
‘*/’]

BOLTZMANN::= ‘boltzmann’

COLON::= ‘:’

COMMA::= ‘,’

DECONSTRUCT::= ‘=..’

DECREMENT::= ‘–’

DIGIT::= ‘0-9’

DOLLAR::= ‘$’

DOT::= ‘.’

DOUBLEEXCLAMATIONMARK::=
‘!!’

DOUBLEQUOTESTRING::= [‘"’ (not
‘"’)* ‘"’]

ELECTRON::= ‘electron’

EQUAL::= ‘==’

EULER::= ‘euler’

EXCLAMATIONMARK::= ‘!’

FALSE::= ‘false’
| ‘fail’

GRAVITY::= ‘gravity’

GREATER::= ‘>’

GREATEREQUAL::= ‘>=’

INCREMENT::= ‘++’

INFINITY::= ‘infinity’

LEFTANGULARBRACKET::= ‘[’

LEFTARROW::= ‘<-’

LEFTCURVEDBRACKET::= ‘{’

LEFTROUNDBRACKET::= ‘(’

LEFTSHIFT::= ‘«’

LESS::= ‘<’

LESSEQUAL::= ‘<=’

LIGHTSPEED::= ‘lightspeed’

LINECOMMENT::= [‘//’
| ‘#’ ‘any char’* ‘\r’? ‘\n’]

LOWERCASELETTER::= ‘a-z’

MINUS::= ‘-’

MODULO::= ‘%’

MULTIPLY::= ‘*’

NEUTRON::= ‘neutron’

NOTEQUAL::= ‘\\==’
| ‘!=’

OR::= ‘ ’

PARALLEL::= ‘parallel’

PI::= ‘pi’

PLUS::= ‘+’

POW::= ‘**’

PROTON::= ‘proton’

QUESTIONMARK::= ‘?’

RIGHTANGULARBRACKET::= ‘]’

RIGHTARROW::= ‘->’

RIGHTCURVEDBRACKET::= ‘}’

RIGHTROUNDBRACKET::= ‘)’

RIGHTSHIFT::= ‘»’

RULEOPERATOR::= ‘:-’

SCORE::= ‘score’

SEMICOLON::= ‘;’

29 Technical Report IfI-16-04

Grammar Definition

SINGLEQUOTESTRING::= [‘\’’ (not
‘\’’)* ‘\’’]

SLASH::= ‘/’

STRONGNEGATION::= ‘~’

TRUE::= ‘true’
| ‘success’

UNDERSCORE::= ‘_’

UPPERCASELETTER::= ‘A-Z’

VLINE::= ‘’

WHITESPACE::= ‘ ’
| ‘\n’
| ‘\t’
| ‘\r’+

XOR::= ‘^’

DEPARTMENT OF INFORMATICS 30

LIGHTJASON

B Testing Agent

1 // --- initial beliefs -----

3 ~hallo("text").
4 hallo(123)[abc(8),value(’xxxx’)].
5 hallo(666)[abc(8)].
6 hallo(123).
7 hallo("foo").
8 hallo(1111).
9 hallo(600).

10 hallo(999).
11 hallo(900).
12 hallo(888).
13 hallo(777).
14 hallo(700).
15 hallo(foo(3)).
16 foo(blub(1),hallo("test")).
17 second(true).

21 // --- initial goal -----

23 !main.

26 // --- logical rules -----

28 fibonacci(X, R)
29 // order of the rules are indeterministic, so for avoid

indeterministic behaviour
30 // add the condition, when the rule can be executed first
31 :- X <= 2; R = 1
32 :- X > 2; TA = X - 1; TB = X - 2; $fibonacci(TA,A); $fibonacci(TB,B)

; R = A+B
33 .

35 ackermann(N, M, R)
36 :- N == 0; M > 0; R = M+1
37 :- M == 0; N > 0; TN = N-1; $ackermann(TN, 1, RA); R = RA
38 :- N > 0; M > 0; TN = N-1; TM = M-1; $ackermann(N, TM, RI); $ackermann

(TN, RI, RO); R = RO
39 .

41 myfunction(X) :- generic/print("my logical rule", X).

45 // --- plans -----

47 +counter(X) <- generic/print("belief ’counter’ added with variable value
[", X, "] in Cycle [", Cycle, "]").

31 Technical Report IfI-16-04

Testing Agent

50 +beliefadd(X) <- generic/print("adds the ’beliefadd’ with value [", X, "
] in Cycle [", Cycle, "]"); -beliefadd(X).

51 -beliefadd(X) <- generic/print("removes the ’beliefadd’ with value [", X
, "] in Cycle [", Cycle, "]").

54 +!mytest <- generic/print("my test plan without variable in cycle [",
Cycle, "]").

57 +!mytest(X) <-
58 generic/print("my test plan with variable value [", X, "] in cycle[",

Cycle, "]");
59 Y = X-1;
60 !mytest(Y)
61 .

64 -!errorplan <- generic/print("fail plan (deletion goal) in cycle [",
Cycle, "]").

67 +!errorplan <-
68 generic/print("fail plan is failing in cycle [", Cycle, "]");
69 fail
70 .

73 -!myexternal <- generic/print("external trigger in cycle [", Cycle, "]")
.

76 +!main

78 : >>(hallo(X), generic/type/isstring(X)) <-
79 generic/print("---", "first plan", "---", "unification variables", X

)

81 : >>(hallo(X), generic/type/isnumeric(X) && X > 1000) <-
82 generic/print("---", "second plan", "---", "unification variables",

X)

84 <-

86 // --- internal variables -----

88 generic/print("constants", Score, Cycle, " ", MyConstInt,
MyConstString, " ", PlanFail, PlanFailRatio, PlanSuccessful,
PlanSuccessfulRatio);

92 // --- collections -----

DEPARTMENT OF INFORMATICS 32

LIGHTJASON

94 L = collection/list/range(1, 20);
95 [A|B|C| _ |D|E|F|G] = L;
96 Intersect = collection/list/intersect([1,2,3,4,5], [3,4,5,6,7],

[3,8,9,5]);
97 Union = collection/list/union([1,2,3], [2,3,4], [3,4,5]);
98 SD = collection/list/symmetricdifference([1,2,3], [3,4]);
99 CP = collection/list/complement([1,2,3,4,5], [1,2]);

101 generic/print("list elements", A,B,C,D,E,F,G, L);
102 generic/print("intersection & union & symmetric difference &

complement", Intersect, "--", Union, "--", SD, "--", CP);
103 generic/print();

107 // --- literal accessing -----

109 [O|P] =.. foo(blub(1), blah(3));
110 [H|I] = P;
111 generic/print("deconstruct", O,P,H,I);
112 generic/print();

116 // --- simple arithmetic -----

118 Z = 10 * 4 ** 0.5;
119 generic/print("simple expression", Z);
120 generic/print();

124 // --- string -----

126 SBase64 = generic/string/base64encode("Base64 encoded string");
127 SReverse = generic/string/reverse("abcdefg");
128 SUpper = generic/string/upper("AbCdefg");
129 SLower = generic/string/lower("AbCdefg");
130 SReplace = generic/string/replace("a1b1defg1xyz1ui", "1", "-");
131 SRand = generic/string/random(20, "

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
);

132 generic/print("string", SBase64, "--", SReverse, "--", SUpper, "--",
SLower, "--", SRand, "--", SReplace);

133 generic/print();

137 // --- blas arithmetic -----

139 M = math/blas/matrix/create(2,2);
140 math/blas/matrix/set(M, 0,0, 1);
141 math/blas/matrix/set(M, 0,1, 2);
142 math/blas/matrix/set(M, 1,0, 3);
143 math/blas/matrix/set(M, 1,1, 4);

33 Technical Report IfI-16-04

Testing Agent

144 Det = math/blas/matrix/determinant(M);
145 EV = math/blas/matrix/eigenvalue(M);
146 generic/print("matrix", M,Det,EV);
147 generic/print();

151 // --- random -----

153 Distribution = math/statistic/createdistribution("normal", 20, 100
);

154 RV = math/statistic/randomsample(Distribution, 8);
155 generic/print("random", RV);
156 generic/print();

160 // --- date / time -----

162 [Hour | Minute | Second | Nano | Zone1] = generic/datetime/time();
163 [Day | Month | Year | DayOfWeek | DayOfYear | Zone2] =

generic/datetime/date();
164 generic/print("date & time", Hour, Minute, Second, Nano, Zone1, "--"

, Day, Month, Year, DayOfWeek, DayOfYear, Zone2);
165 generic/print();

169 // --- math functions -----

171 MinIdx = math/minindex(RV);
172 MaxIdx = math/maxindex(RV);
173 InRect = math/shape/inrectangle(2,1, 0,0, 4,5);
174 InCircle = math/shape/incircle(2,1, 2,2, 1);
175 InTriangle = math/shape/intriangle(160,270, 350,320, 25,375,

40,55);

177 generic/print("min & max index", MinIdx, MaxIdx);
178 generic/print("shapes (in)", "", "rectangle", InRect, "circle",

InCircle, "triangle", InTriangle);
179 generic/print();

183 // --- statistics -----

185 Statistic = math/statistic/createstatistic();
186 math/statistic/addstatisticvalue(Statistic, RV, L);

188 SMax = math/statistic/getstatisticvalue(Statistic, "max");
189 SMin = math/statistic/getstatisticvalue(Statistic, "min");
190 SCount = math/statistic/getstatisticvalue(Statistic, "count");
191 SPopVariance = math/statistic/getstatisticvalue(Statistic, "

populationvariance");
192 SQuadraticMean = math/statistic/getstatisticvalue(Statistic, "

DEPARTMENT OF INFORMATICS 34

LIGHTJASON

quadraticmean");
193 SSecondMom = math/statistic/getstatisticvalue(Statistic, "

secondmoment");
194 SStd = math/statistic/getstatisticvalue(Statistic, "

standarddeviation");
195 SSum = math/statistic/getstatisticvalue(Statistic, "sum");
196 SSumSq = math/statistic/getstatisticvalue(Statistic, "sumsquare");
197 SVar = math/statistic/getstatisticvalue(Statistic, "variance");
198 SMean = math/statistic/getstatisticvalue(Statistic, "mean");

200 generic/print("statistic", SMax, SMin, SCount, SPopVariance,
SQuadraticMean, SSecondMom, SStd, SSum, SSumSq, SVar, SMean);

201 generic/print();

204 FValue = collection/list/create(1, 3, 1, 1);
205 Fitness1 = math/statistic/fitnessproportionateselection(["a", "b",

"c", "d"], FValue);
206 Fitness2 = math/statistic/fitnessproportionateselection(["e", "f",

"g", "h"], [1,1,3,1]);
207 generic/print("fitness proportionate selection", Fitness1, Fitness2

);
208 generic/print();

212 // --- LP solver -----

214 LP1 = math/linearprogram/create(2, 2, 1, 0);
215 math/linearprogram/valueconstraint(LP1, 1, 1, 0, ">=", 1);
216 math/linearprogram/valueconstraint(LP1, 1, 0, 1, ">=", 1);
217 math/linearprogram/valueconstraint(LP1, 0, 1, 0, ">=", 1);
218 [LP1Value | LP1PointCount | LP1Points] = math/linearprogram/solve(

LP1, "minimize", "non-negative");

220 LP2 = math/linearprogram/create(0.8, 0.2, 0.7, 0.3, 0.6, 0.4, 0);
221 math/linearprogram/valueconstraint(LP2, 1, 0, 1, 0, 1, 0, "=", 23

);
222 math/linearprogram/valueconstraint(LP2, 0, 1, 0, 1, 0, 1, "=", 23

);
223 math/linearprogram/valueconstraint(LP2, 1, 0, 0, 0, 0, 0, ">=", 10

);
224 math/linearprogram/valueconstraint(LP2, 0, 0, 1, 0, 0, 0, ">=", 8)

;
225 math/linearprogram/valueconstraint(LP2, 0, 0, 0, 0, 1, 0, ">=", 5)

;
226 [LP2Value | LP2PointCount | LP2Points] = math/linearprogram/solve(

LP2, "maximize", "non-negative");

228 generic/print("LP solve minimize", LP1Value, LP1PointCount,
LP1Points);

229 generic/print("LP solve maximize", LP2Value, LP2PointCount,
LP2Points);

230 generic/print();

35 Technical Report IfI-16-04

Testing Agent

234 // --- polynomial interpolation -----

236 PI = math/interpolate/create("neville", [-5,1,2,8,14], [7,3,7,4,8]);
237 [PIV] = math/interpolate/interpolate(PI, 3 , 5, 10, -3);

239 generic/print("interpolate", PIV);
240 generic/print();

244 // --- hash -----

246 HashMD5 = crypto/hash("md5", "hallo");
247 HashMurmur = crypto/hash("murmur3-32", "hallo");
248 HashAdler = crypto/hash("adler-32", "hallo");
249 HashCrc = crypto/hash("crc-32", "hallo");
250 HashSHA = crypto/hash("sha-256", "string test1", "second data", 4,

5, 6);
251 generic/print("MD5 & SHA-256 & Murmur & Adler & CRC hash", HashMD5,

HashSHA, HashMurmur, HashAdler, HashCrc);
252 generic/print();

256 // ---- crypto (AES & DES) -----

258 DESKey = crypto/createkey("DES");
259 DESEncrypt = crypto/encrypt(DESKey, "DES uncrypted message");
260 DESDecrypt = crypto/decrypt(DESKey, DESEncrypt);
261 generic/print("crypto des", DESEncrypt, DESDecrypt);

263 AESKey = crypto/createkey("AES");
264 AESEncrypt = crypto/encrypt(AESKey, "AES uncrypted message");
265 AESDecrypt = crypto/decrypt(AESKey, AESEncrypt);
266 generic/print("crypto aes", AESEncrypt, AESDecrypt);
267 generic/print();

271 // --- crypto (RSA) -----

273 [PublicKey1 | PrivateKey1] = crypto/createkey("RSA");
274 [PublicKey2 | PrivateKey2] = crypto/createkey("RSA");

276 Encrypt1to2 = crypto/encrypt(PublicKey2, "RSA message from 1 to 2"
);

277 Encrypt2to1 = crypto/encrypt(PublicKey1, "RSA message from 2 to 1"
);

279 Decrypt1to2 = crypto/decrypt(PrivateKey2, Encrypt1to2);
280 Decrypt2to1 = crypto/decrypt(PrivateKey1, Encrypt2to1);

282 generic/print("crypto rsa 1 to 2", Encrypt1to2, Decrypt1to2);

DEPARTMENT OF INFORMATICS 36

LIGHTJASON

283 generic/print("crypto rsa 2 to 1", Encrypt2to1, Decrypt2to1);
284 generic/print();

289 // ---- sequential & parallel lambda expression -----

291 (L) -> Y : generic/print(Y);

293 BL = generic/agent/belieflist("hallo");
294 (BL) -> Y : generic/print(Y);

296 @(L) -> Y | R : R = Y+1;
297 generic/print("lambda return", R);
298 generic/print();

300 PL = generic/agent/planlist();
301 PLN = collection/map/keys(PL);
302 (PLN) -> Y : generic/print(Y);

304 generic/print();

308 // --- sequential & parallel unification -----

310 // unify default
311 >>hallo(UN1) << true;
312 >>foo(UN4, UN5) << true;
313 >>foo(blub(UN6), hallo(UN7)) << true;
314 >>foo(blub(1), hallo(UN8)) << true;

316 // unify with expression
317 >>(hallo(UN2), generic/type/isstring(UN2)) << true;
318 @>>(hallo(UN3), generic/type/isnumeric(UN3) && (UN3 > 200)) <<

true;

320 // unify variable (I is defined on the deconstruct call on top)
321 >>(blah(UN9), I) << true;

323 // manual literal parsing & unification
324 UN10 = generic/type/parseliteral("foo(12345)");
325 >>(foo(UN11), UN10) << true;

327 generic/print("unification", UN1, UN2, UN3, " ", UN4, UN5, " ",
UN6, UN7, UN8, " ", UN9, " ", UN10, UN11);

328 generic/print();

332 // --- repair & plan & goal handling -----

334 // test-goal not exist, so use repair definition
335 ?plannotexist << true;

37 Technical Report IfI-16-04

References

337 // test-goal exists, so no repair handling (only the functor is
checked)

338 ?main;

340 // run plan immediately
341 PLAN = "mytest";
342 !!PLAN;
343 !!PLAN(5);

345 // run plan within the next cycle
346 !mytest;
347 !mytest(4);
348 !errorplan;

352 // --- test belief calls -----

354 +beliefadd(UN8);

358 // --- rule execution -----

360 $myfunction("fooooooo");
361 $fibonacci(8, FIB);

363 RULE = "fibonacci";
364 $RULE(8,FIB2);

366 generic/print("rule execution (fibonacci)", FIB, FIB2);
367 FIB == 21;
368 FIB2 == 21;

370 $ackermann(3, 3, ACK);
371 generic/print("rule execution (ackermann)", ACK);
372 ACK == 61;

374 FIBX = -1;
375 $fibonacci(8, FIBX);
376 generic/print("rule execution (fibonacci) in-place modification",

FIBX);
377 FIBX == 21;

381 // --- condition & plan passing -----

383 Text = Z > 100 ? "Z greater equal 100" : "Z is less 100";
384 generic/print("ternary operator", Text);

386 Z < 100;
387 generic/print("plan passed")
388 .

DEPARTMENT OF INFORMATICS 38

LIGHTJASON

References
[1] Y. Shoham, “Agent-Oriented Programming,” Artificial Intelligence, vol. 60, no. 1,

pp. 51–92, 1993.

[2] A. S. Rao and M. P. Georgeff, “BDI agents: From theory to practice,” in Proc. 1st
Int. Conf. on Multiagent Systems, June 12-14, 1995, San Francisco, California,
USA, pp. 312–319, 1995.

[3] A. S. Rao, “AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage,” in Proc. of MAAMAW ’96, (Secaucus, NJ, USA), pp. 42–55, Springer-
Verlag New York, Inc., 1996.

[4] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming multi-agent sys-
tems in AgentSpeak using Jason. Wiley & Sons, 2007.

[5] TIOBE. http://www.tiobe.com/tiobe_index, accessed: 2016-
06-27 (archived by WebCite R© at http://www.webcitation.org/
6iZwpVq0y).

[6] RedMonk. http://redmonk.com/sogrady/2016/02/19/
language-rankings, accessed: 2016-06-27 (archived by WebCite R© at
http://www.webcitation.org/6iZxPEb9K).

[7] PopularitY. http://pypl.github.io/, accessed: 2016-06-27 (archived by
WebCite R© at http://www.webcitation.org/6iZxjsbBs).

[8] J. P. Müller and K. Fischer, “Application impact of multi-agent systems and
technologies: A survey,” in Agent-Oriented Software Engineering: Reflections
on Architectures, Methodologies, Languages, and Frameworks (O. Shehory and
A. Sturm, eds.), pp. 27–53, Springer, 2014.

[9] T. Ahlbrecht, J. Dix, M. Köster, P. Kraus, and J. P. Müller, “An architecture
for scalable simulation of systems of cognitive agents,” International Journal of
Agent-Oriented Software Engineering, 2016. To appear.

[10] M. Georgeff and A. Lansky, “Procedural knowledge,” Proceedings of the IEEE,
vol. 74, no. 10, pp. 1383–1398, 1986.

[11] M. P. Georgeff and A. L. Lansky, “Reactive reasoning and planning,” in Pro-
ceedings of the Sixth National Conference on Artificial Intelligence - Volume 2,
AAAI’87, pp. 677–682, AAAI Press, 1987.

[12] M. d’Inverno, M. Luck, M. Georgeff, D. Kinny, and M. Wooldridge, “The dMARS
architecture: A specification of the distributed multi-agent reasoning system,” Au-
tonomous Agents and Multi-Agent Systems, vol. 9, pp. 5–53, jul 2004.

[13] V. Mascardi, D. Demergasso, and D. Ancona, “Languages for programming BDI-
style agents: an overview.,” in WOA, pp. 9–15, 2005.

39 Technical Report IfI-16-04

http://www.tiobe.com/tiobe_index
http://www.webcitation.org/6iZwpVq0y
http://www.webcitation.org/6iZwpVq0y
http://redmonk.com/sogrady/2016/02/19/language-rankings
http://redmonk.com/sogrady/2016/02/19/language-rankings
http://www.webcitation.org/6iZxPEb9K
http://pypl.github.io/
http://www.webcitation.org/6iZxjsbBs

References

[14] R. H. Bordini, A. L. Bazzan, R. de O Jannone, D. M. Basso, R. M. Vicari, and
V. R. Lesser, “AgentSpeak(XL): Efficient intention selection in BDI agents via
decision-theoretic task scheduling,” in Proc. 1st Int. Joint Conf. on Autonomous
Agents and Multiagent Systems: part 3, pp. 1294–1302, ACM, 2002.

[15] S. Dennisen and J. P. Müller, “Iterative committee elections for collective
decision-making in a ride-sharing application,” in Proc. 9th International Work-
shop on Agents in Traffic and Transport (ATT 2016) at IJCAI 2016 (A. L. C.
Bazzan, F. Klügl, S. Ossowski, and G. Vizzari, eds.), (New York, USA), pp. 1–8,
CEUR, July 2016. Electronic proceedings.

[16] A. Zatelli, Maicon R.and Ricci and J. F. Hübner, “A concurrent architecture for
agent reasoning cycle execution in jason,” in Multi-Agent Systems and Agreement
Technologies: 13th Europ. Conf., EUMAS 2015, and 3rd Int. Conf., AT 2015,
Athens, Greece, 2015, pp. 425–440, Springer International Publishing, 2016.

[17] M. J. Wooldridge, “An introduction to multiagent systems,” 2009.

[18] A. Tanenbaum and H. Bos, Modern Operating Systems: Global Edition. Pearson
Education Limited, 2015.

[19] A. Lux and D. Steiner, “Understanding cooperation: An agent’s perspective.,” in
ICMAS, pp. 261–268, 1995.

[20] J. P. Müller, The Design of Intelligent Agents, vol. 1177 of Lecture Notes in Arti-
ficial Intelligence. Springer-Verlag, 1996.

[21] S. Rabin and N. Sturtevant, “Combining bounding boxes and jps to prune grid
pathfinding,” AAAI Conference on Artificial Intelligence, 2016.

DEPARTMENT OF INFORMATICS 40

	Introduction
	Requirements and State of the Art
	Requirements
	Discussion of state of the art

	LightJason Architecture and Data Model
	AgentSpeak(L++) Language Definition
	Grammar Definition
	Grammar module: Agent
	Grammar module: Plan Bundles
	Grammar module: AgentSpeak(L++)
	Grammar module: ComplexType
	Grammar module: Terminal

	Built-in Actions

	Evaluation and Discussion
	Evacuation scenario
	Preliminary validation
	Discussion

	Conclusion & Outlook
	Appendices
	Grammar Definition
	Agent Grammar
	Plan Bundle Grammar
	AgentSpeak(L++) Grammar
	ComplexType Grammar
	Terminal Grammar

	Testing Agent

	fd@rm@0:

